Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Direct radiative forcing of anthropogenic organic aerosol

Identifieur interne : 000168 ( PascalFrancis/Corpus ); précédent : 000167; suivant : 000169

Direct radiative forcing of anthropogenic organic aerosol

Auteurs : YI MING ; V. Ramaswamy ; Paul A. Ginoux ; Larry H. Horowitz

Source :

RBID : Pascal:06-0013167

Descripteurs français

English descriptors

Abstract

This study simulates the direct radiative forcing of organic aerosol using the GFDL AM2 GCM. The aerosol climatology is provided by the MOZART chemical transport model (CTM). The approach to calculating aerosol optical properties explicitly considers relative humidity-dependent hygroscopic growth by employing a functional group-based thermodynamic model, and makes use of the size distribution derived from AERONET measurements. The preindustrial (PI) and present-day (PD) global burdens of organic carbon are 0.17 and 1.36 Tg OC, respectively. The annual global mean total-sky and clear-sky top-of-the atmosphere (TOA) forcings (PI to PD) are estimated as -0.34 and -0.71 W m-2, respectively. Geographically the radiative cooling largely lies over the source regions, namely part of South America, Central Africa, Europe and South and East Asia. The annual global mean total-sky and clear-sky surface forcings are -0.63 and -0.98 W m-2, respectively. A series of sensitivity analyses shows that the treatments of hygroscopic growth and optical properties of organic aerosol are intertwined in the determination of the global organic aerosol forcing. For example, complete deprivation of water uptake by hydrophilic organic particles reduces the standard (total-sky) and clear-sky TOA forcing estimates by 18% and 20%, respectively, while the uptake by a highly soluble organic compound (malonic acid) enhances them by 18% and 32%, respectively. Treating particles as non-absorbing enhances aerosol reflection and increases the total-sky and clear-sky TOA forcing by 47% and 18%, respectively, while neglecting the scattering brought about by the water associated with particles reduces them by 24% and 7%, respectively.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 110
A06       @2 D20
A08 01  1  ENG  @1 Direct radiative forcing of anthropogenic organic aerosol
A11 01  1    @1 YI MING
A11 02  1    @1 RAMASWAMY (V.)
A11 03  1    @1 GINOUX (Paul A.)
A11 04  1    @1 HOROWITZ (Larry H.)
A14 01      @1 Visiting Scientist Program, University Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory @2 Princeton, New Jersey @3 USA @Z 1 aut.
A14 02      @1 Geophysical Fluid Dynamics Laboratory @2 Princeton, New Jersey @3 USA @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @2 D20208.1-D20208.12
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000135086770130
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 32 ref.
A47 01  1    @0 06-0013167
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 This study simulates the direct radiative forcing of organic aerosol using the GFDL AM2 GCM. The aerosol climatology is provided by the MOZART chemical transport model (CTM). The approach to calculating aerosol optical properties explicitly considers relative humidity-dependent hygroscopic growth by employing a functional group-based thermodynamic model, and makes use of the size distribution derived from AERONET measurements. The preindustrial (PI) and present-day (PD) global burdens of organic carbon are 0.17 and 1.36 Tg OC, respectively. The annual global mean total-sky and clear-sky top-of-the atmosphere (TOA) forcings (PI to PD) are estimated as -0.34 and -0.71 W m-2, respectively. Geographically the radiative cooling largely lies over the source regions, namely part of South America, Central Africa, Europe and South and East Asia. The annual global mean total-sky and clear-sky surface forcings are -0.63 and -0.98 W m-2, respectively. A series of sensitivity analyses shows that the treatments of hygroscopic growth and optical properties of organic aerosol are intertwined in the determination of the global organic aerosol forcing. For example, complete deprivation of water uptake by hydrophilic organic particles reduces the standard (total-sky) and clear-sky TOA forcing estimates by 18% and 20%, respectively, while the uptake by a highly soluble organic compound (malonic acid) enhances them by 18% and 32%, respectively. Treating particles as non-absorbing enhances aerosol reflection and increases the total-sky and clear-sky TOA forcing by 47% and 18%, respectively, while neglecting the scattering brought about by the water associated with particles reduces them by 24% and 7%, respectively.
C02 01  2    @0 220
C02 02  3    @0 001E
C02 03  2    @0 001E01
C03 01  X  FRE  @0 Transfert radiatif @5 01
C03 01  X  ENG  @0 Radiative transfer @5 01
C03 01  X  SPA  @0 Transferencia radiativa @5 01
C03 02  X  FRE  @0 Forçage @5 02
C03 02  X  ENG  @0 Forcing @5 02
C03 02  X  SPA  @0 Forzamiento @5 02
C03 03  2  FRE  @0 Aérosol @5 03
C03 03  2  ENG  @0 aerosols @5 03
C03 03  2  SPA  @0 Aerosol @5 03
C03 04  3  FRE  @0 Modèle circulation générale @5 04
C03 04  3  ENG  @0 General circulation models @5 04
C03 05  X  FRE  @0 Climatologie @5 05
C03 05  X  ENG  @0 Climatology @5 05
C03 05  X  SPA  @0 Climatología @5 05
C03 06  2  FRE  @0 Transport @5 06
C03 06  2  ENG  @0 transport @5 06
C03 06  2  SPA  @0 Transporte @5 06
C03 07  2  FRE  @0 Propriété optique @5 07
C03 07  2  ENG  @0 optical properties @5 07
C03 07  2  SPA  @0 Propiedad óptica @5 07
C03 08  X  FRE  @0 Humidité relative @5 08
C03 08  X  ENG  @0 Relative humidity @5 08
C03 08  X  SPA  @0 Humedad relativa @5 08
C03 09  2  FRE  @0 Croissance @5 09
C03 09  2  ENG  @0 growth @5 09
C03 10  X  FRE  @0 Fonctionnelle @5 10
C03 10  X  ENG  @0 Functional @5 10
C03 10  X  SPA  @0 Funciónal @5 10
C03 11  X  FRE  @0 Modèle thermodynamique @5 11
C03 11  X  ENG  @0 Thermodynamic model @5 11
C03 11  X  SPA  @0 Modelo termodinámico @5 11
C03 12  2  FRE  @0 Distribution dimension @5 12
C03 12  2  ENG  @0 size distribution @5 12
C03 13  2  FRE  @0 Monde @5 13
C03 13  2  ENG  @0 global @5 13
C03 13  2  SPA  @0 Mundo @5 13
C03 14  2  FRE  @0 Carbone organique @5 14
C03 14  2  ENG  @0 organic carbon @5 14
C03 14  2  SPA  @0 Carbono orgánico @5 14
C03 15  X  FRE  @0 Ciel serein @5 15
C03 15  X  ENG  @0 Clear sky @5 15
C03 15  X  SPA  @0 Cielo sereno @5 15
C03 16  2  FRE  @0 Atmosphère @5 16
C03 16  2  ENG  @0 atmosphere @5 16
C03 16  2  SPA  @0 Atmósfera @5 16
C03 17  2  FRE  @0 Refroidissement @5 17
C03 17  2  ENG  @0 cooling @5 17
C03 17  2  SPA  @0 Enfriamiento @5 17
C03 18  2  FRE  @0 Amérique du Sud @5 18
C03 18  2  ENG  @0 South America @5 18
C03 18  2  SPA  @0 America del sur @5 18
C03 19  2  FRE  @0 Amérique Centrale @5 19
C03 19  2  ENG  @0 Central America @5 19
C03 19  2  SPA  @0 America central @5 19
C03 20  2  FRE  @0 Europe @5 20
C03 20  2  ENG  @0 Europe @5 20
C03 20  2  SPA  @0 Europa @5 20
C03 21  2  FRE  @0 Asie @5 21
C03 21  2  ENG  @0 Asia @5 21
C03 21  2  SPA  @0 Asia @5 21
C03 22  2  FRE  @0 Analyse sensibilité @5 22
C03 22  2  ENG  @0 sensitivity analysis @5 22
C03 23  X  FRE  @0 Captation @5 23
C03 23  X  ENG  @0 Uptake @5 23
C03 23  X  SPA  @0 Captación @5 23
C03 24  2  FRE  @0 Particule @5 24
C03 24  2  ENG  @0 particles @5 24
C03 25  2  FRE  @0 Echantillon référence @5 25
C03 25  2  ENG  @0 standard samples @5 25
C03 25  2  SPA  @0 Roca patrón @5 25
C03 26  2  FRE  @0 Afrique Centrale @2 NG @5 61
C03 26  2  ENG  @0 Central Africa @2 NG @5 61
C07 01  2  FRE  @0 Afrique
C07 01  2  ENG  @0 Africa
C07 01  2  SPA  @0 Africa
N21       @1 002
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 06-0013167 INIST
ET : Direct radiative forcing of anthropogenic organic aerosol
AU : YI MING; RAMASWAMY (V.); GINOUX (Paul A.); HOROWITZ (Larry H.)
AF : Visiting Scientist Program, University Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory/Princeton, New Jersey/Etats-Unis (1 aut.); Geophysical Fluid Dynamics Laboratory/Princeton, New Jersey/Etats-Unis (2 aut., 3 aut., 4 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2005; Vol. 110; No. D20; D20208.1-D20208.12; Bibl. 32 ref.
LA : Anglais
EA : This study simulates the direct radiative forcing of organic aerosol using the GFDL AM2 GCM. The aerosol climatology is provided by the MOZART chemical transport model (CTM). The approach to calculating aerosol optical properties explicitly considers relative humidity-dependent hygroscopic growth by employing a functional group-based thermodynamic model, and makes use of the size distribution derived from AERONET measurements. The preindustrial (PI) and present-day (PD) global burdens of organic carbon are 0.17 and 1.36 Tg OC, respectively. The annual global mean total-sky and clear-sky top-of-the atmosphere (TOA) forcings (PI to PD) are estimated as -0.34 and -0.71 W m-2, respectively. Geographically the radiative cooling largely lies over the source regions, namely part of South America, Central Africa, Europe and South and East Asia. The annual global mean total-sky and clear-sky surface forcings are -0.63 and -0.98 W m-2, respectively. A series of sensitivity analyses shows that the treatments of hygroscopic growth and optical properties of organic aerosol are intertwined in the determination of the global organic aerosol forcing. For example, complete deprivation of water uptake by hydrophilic organic particles reduces the standard (total-sky) and clear-sky TOA forcing estimates by 18% and 20%, respectively, while the uptake by a highly soluble organic compound (malonic acid) enhances them by 18% and 32%, respectively. Treating particles as non-absorbing enhances aerosol reflection and increases the total-sky and clear-sky TOA forcing by 47% and 18%, respectively, while neglecting the scattering brought about by the water associated with particles reduces them by 24% and 7%, respectively.
CC : 220; 001E; 001E01
FD : Transfert radiatif; Forçage; Aérosol; Modèle circulation générale; Climatologie; Transport; Propriété optique; Humidité relative; Croissance; Fonctionnelle; Modèle thermodynamique; Distribution dimension; Monde; Carbone organique; Ciel serein; Atmosphère; Refroidissement; Amérique du Sud; Amérique Centrale; Europe; Asie; Analyse sensibilité; Captation; Particule; Echantillon référence; Afrique Centrale
FG : Afrique
ED : Radiative transfer; Forcing; aerosols; General circulation models; Climatology; transport; optical properties; Relative humidity; growth; Functional; Thermodynamic model; size distribution; global; organic carbon; Clear sky; atmosphere; cooling; South America; Central America; Europe; Asia; sensitivity analysis; Uptake; particles; standard samples; Central Africa
EG : Africa
SD : Transferencia radiativa; Forzamiento; Aerosol; Climatología; Transporte; Propiedad óptica; Humedad relativa; Funciónal; Modelo termodinámico; Mundo; Carbono orgánico; Cielo sereno; Atmósfera; Enfriamiento; America del sur; America central; Europa; Asia; Captación; Roca patrón
LO : INIST-3144.354000135086770130
ID : 06-0013167

Links to Exploration step

Pascal:06-0013167

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Direct radiative forcing of anthropogenic organic aerosol</title>
<author>
<name sortKey="Yi Ming" sort="Yi Ming" uniqKey="Yi Ming" last="Yi Ming">YI MING</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Visiting Scientist Program, University Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ramaswamy, V" sort="Ramaswamy, V" uniqKey="Ramaswamy V" first="V." last="Ramaswamy">V. Ramaswamy</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ginoux, Paul A" sort="Ginoux, Paul A" uniqKey="Ginoux P" first="Paul A." last="Ginoux">Paul A. Ginoux</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry H" sort="Horowitz, Larry H" uniqKey="Horowitz L" first="Larry H." last="Horowitz">Larry H. Horowitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0013167</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 06-0013167 INIST</idno>
<idno type="RBID">Pascal:06-0013167</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000168</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Direct radiative forcing of anthropogenic organic aerosol</title>
<author>
<name sortKey="Yi Ming" sort="Yi Ming" uniqKey="Yi Ming" last="Yi Ming">YI MING</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Visiting Scientist Program, University Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ramaswamy, V" sort="Ramaswamy, V" uniqKey="Ramaswamy V" first="V." last="Ramaswamy">V. Ramaswamy</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ginoux, Paul A" sort="Ginoux, Paul A" uniqKey="Ginoux P" first="Paul A." last="Ginoux">Paul A. Ginoux</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry H" sort="Horowitz, Larry H" uniqKey="Horowitz L" first="Larry H." last="Horowitz">Larry H. Horowitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Asia</term>
<term>Central Africa</term>
<term>Central America</term>
<term>Clear sky</term>
<term>Climatology</term>
<term>Europe</term>
<term>Forcing</term>
<term>Functional</term>
<term>General circulation models</term>
<term>Radiative transfer</term>
<term>Relative humidity</term>
<term>South America</term>
<term>Thermodynamic model</term>
<term>Uptake</term>
<term>aerosols</term>
<term>atmosphere</term>
<term>cooling</term>
<term>global</term>
<term>growth</term>
<term>optical properties</term>
<term>organic carbon</term>
<term>particles</term>
<term>sensitivity analysis</term>
<term>size distribution</term>
<term>standard samples</term>
<term>transport</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transfert radiatif</term>
<term>Forçage</term>
<term>Aérosol</term>
<term>Modèle circulation générale</term>
<term>Climatologie</term>
<term>Transport</term>
<term>Propriété optique</term>
<term>Humidité relative</term>
<term>Croissance</term>
<term>Fonctionnelle</term>
<term>Modèle thermodynamique</term>
<term>Distribution dimension</term>
<term>Monde</term>
<term>Carbone organique</term>
<term>Ciel serein</term>
<term>Atmosphère</term>
<term>Refroidissement</term>
<term>Amérique du Sud</term>
<term>Amérique Centrale</term>
<term>Europe</term>
<term>Asie</term>
<term>Analyse sensibilité</term>
<term>Captation</term>
<term>Particule</term>
<term>Echantillon référence</term>
<term>Afrique Centrale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study simulates the direct radiative forcing of organic aerosol using the GFDL AM2 GCM. The aerosol climatology is provided by the MOZART chemical transport model (CTM). The approach to calculating aerosol optical properties explicitly considers relative humidity-dependent hygroscopic growth by employing a functional group-based thermodynamic model, and makes use of the size distribution derived from AERONET measurements. The preindustrial (PI) and present-day (PD) global burdens of organic carbon are 0.17 and 1.36 Tg OC, respectively. The annual global mean total-sky and clear-sky top-of-the atmosphere (TOA) forcings (PI to PD) are estimated as -0.34 and -0.71 W m
<sup>-2</sup>
, respectively. Geographically the radiative cooling largely lies over the source regions, namely part of South America, Central Africa, Europe and South and East Asia. The annual global mean total-sky and clear-sky surface forcings are -0.63 and -0.98 W m
<sup>-2</sup>
, respectively. A series of sensitivity analyses shows that the treatments of hygroscopic growth and optical properties of organic aerosol are intertwined in the determination of the global organic aerosol forcing. For example, complete deprivation of water uptake by hydrophilic organic particles reduces the standard (total-sky) and clear-sky TOA forcing estimates by 18% and 20%, respectively, while the uptake by a highly soluble organic compound (malonic acid) enhances them by 18% and 32%, respectively. Treating particles as non-absorbing enhances aerosol reflection and increases the total-sky and clear-sky TOA forcing by 47% and 18%, respectively, while neglecting the scattering brought about by the water associated with particles reduces them by 24% and 7%, respectively.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>110</s2>
</fA05>
<fA06>
<s2>D20</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Direct radiative forcing of anthropogenic organic aerosol</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YI MING</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RAMASWAMY (V.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GINOUX (Paul A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HOROWITZ (Larry H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Visiting Scientist Program, University Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s2>D20208.1-D20208.12</s2>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000135086770130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0013167</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This study simulates the direct radiative forcing of organic aerosol using the GFDL AM2 GCM. The aerosol climatology is provided by the MOZART chemical transport model (CTM). The approach to calculating aerosol optical properties explicitly considers relative humidity-dependent hygroscopic growth by employing a functional group-based thermodynamic model, and makes use of the size distribution derived from AERONET measurements. The preindustrial (PI) and present-day (PD) global burdens of organic carbon are 0.17 and 1.36 Tg OC, respectively. The annual global mean total-sky and clear-sky top-of-the atmosphere (TOA) forcings (PI to PD) are estimated as -0.34 and -0.71 W m
<sup>-2</sup>
, respectively. Geographically the radiative cooling largely lies over the source regions, namely part of South America, Central Africa, Europe and South and East Asia. The annual global mean total-sky and clear-sky surface forcings are -0.63 and -0.98 W m
<sup>-2</sup>
, respectively. A series of sensitivity analyses shows that the treatments of hygroscopic growth and optical properties of organic aerosol are intertwined in the determination of the global organic aerosol forcing. For example, complete deprivation of water uptake by hydrophilic organic particles reduces the standard (total-sky) and clear-sky TOA forcing estimates by 18% and 20%, respectively, while the uptake by a highly soluble organic compound (malonic acid) enhances them by 18% and 32%, respectively. Treating particles as non-absorbing enhances aerosol reflection and increases the total-sky and clear-sky TOA forcing by 47% and 18%, respectively, while neglecting the scattering brought about by the water associated with particles reduces them by 24% and 7%, respectively.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Transfert radiatif</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Radiative transfer</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Transferencia radiativa</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Forçage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Forcing</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Forzamiento</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Aérosol</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>aerosols</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Aerosol</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Modèle circulation générale</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>General circulation models</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Climatologie</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Climatology</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Climatología</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Transport</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>transport</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Propriété optique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>optical properties</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Propiedad óptica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Humidité relative</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Relative humidity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Humedad relativa</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Croissance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>growth</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Fonctionnelle</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Functional</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Funciónal</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Modèle thermodynamique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Thermodynamic model</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Modelo termodinámico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Distribution dimension</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>size distribution</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Monde</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>global</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Carbone organique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>organic carbon</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Carbono orgánico</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Ciel serein</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Clear sky</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Cielo sereno</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Atmosphère</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>atmosphere</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Atmósfera</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Refroidissement</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>cooling</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Enfriamiento</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Amérique du Sud</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>South America</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>America del sur</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Amérique Centrale</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>Central America</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>America central</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Europe</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>Europe</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Europa</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Asie</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>Asia</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Asia</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Analyse sensibilité</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>sensitivity analysis</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Captation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Uptake</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Captación</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Particule</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>particles</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="2" l="FRE">
<s0>Echantillon référence</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="ENG">
<s0>standard samples</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="SPA">
<s0>Roca patrón</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="2" l="FRE">
<s0>Afrique Centrale</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="26" i2="2" l="ENG">
<s0>Central Africa</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Afrique</s0>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Africa</s0>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Africa</s0>
</fC07>
<fN21>
<s1>002</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 06-0013167 INIST</NO>
<ET>Direct radiative forcing of anthropogenic organic aerosol</ET>
<AU>YI MING; RAMASWAMY (V.); GINOUX (Paul A.); HOROWITZ (Larry H.)</AU>
<AF>Visiting Scientist Program, University Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory/Princeton, New Jersey/Etats-Unis (1 aut.); Geophysical Fluid Dynamics Laboratory/Princeton, New Jersey/Etats-Unis (2 aut., 3 aut., 4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2005; Vol. 110; No. D20; D20208.1-D20208.12; Bibl. 32 ref.</SO>
<LA>Anglais</LA>
<EA>This study simulates the direct radiative forcing of organic aerosol using the GFDL AM2 GCM. The aerosol climatology is provided by the MOZART chemical transport model (CTM). The approach to calculating aerosol optical properties explicitly considers relative humidity-dependent hygroscopic growth by employing a functional group-based thermodynamic model, and makes use of the size distribution derived from AERONET measurements. The preindustrial (PI) and present-day (PD) global burdens of organic carbon are 0.17 and 1.36 Tg OC, respectively. The annual global mean total-sky and clear-sky top-of-the atmosphere (TOA) forcings (PI to PD) are estimated as -0.34 and -0.71 W m
<sup>-2</sup>
, respectively. Geographically the radiative cooling largely lies over the source regions, namely part of South America, Central Africa, Europe and South and East Asia. The annual global mean total-sky and clear-sky surface forcings are -0.63 and -0.98 W m
<sup>-2</sup>
, respectively. A series of sensitivity analyses shows that the treatments of hygroscopic growth and optical properties of organic aerosol are intertwined in the determination of the global organic aerosol forcing. For example, complete deprivation of water uptake by hydrophilic organic particles reduces the standard (total-sky) and clear-sky TOA forcing estimates by 18% and 20%, respectively, while the uptake by a highly soluble organic compound (malonic acid) enhances them by 18% and 32%, respectively. Treating particles as non-absorbing enhances aerosol reflection and increases the total-sky and clear-sky TOA forcing by 47% and 18%, respectively, while neglecting the scattering brought about by the water associated with particles reduces them by 24% and 7%, respectively.</EA>
<CC>220; 001E; 001E01</CC>
<FD>Transfert radiatif; Forçage; Aérosol; Modèle circulation générale; Climatologie; Transport; Propriété optique; Humidité relative; Croissance; Fonctionnelle; Modèle thermodynamique; Distribution dimension; Monde; Carbone organique; Ciel serein; Atmosphère; Refroidissement; Amérique du Sud; Amérique Centrale; Europe; Asie; Analyse sensibilité; Captation; Particule; Echantillon référence; Afrique Centrale</FD>
<FG>Afrique</FG>
<ED>Radiative transfer; Forcing; aerosols; General circulation models; Climatology; transport; optical properties; Relative humidity; growth; Functional; Thermodynamic model; size distribution; global; organic carbon; Clear sky; atmosphere; cooling; South America; Central America; Europe; Asia; sensitivity analysis; Uptake; particles; standard samples; Central Africa</ED>
<EG>Africa</EG>
<SD>Transferencia radiativa; Forzamiento; Aerosol; Climatología; Transporte; Propiedad óptica; Humedad relativa; Funciónal; Modelo termodinámico; Mundo; Carbono orgánico; Cielo sereno; Atmósfera; Enfriamiento; America del sur; America central; Europa; Asia; Captación; Roca patrón</SD>
<LO>INIST-3144.354000135086770130</LO>
<ID>06-0013167</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000168 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000168 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0013167
   |texte=   Direct radiative forcing of anthropogenic organic aerosol
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023